
 1

Composing analysis patterns to build complex models:

 Flight reservation

Zhen Jiang and Eduardo B. Fernandez

Department of Computer Science and Engineering
 Florida Atlantic University

 Boca Raton, FL 33431
 ed@cse.fau.edu

 Abstract

In previous work we developed the concept of Semantic Analysis Patterns (SAPs).

SAPs are mini-applications realizing a few use cases selected so as to make them as

generic as possible. One of the objectives of this approach is to make SAPs a

convenient way for inexperienced modelers to build complex object-oriented models.

In this paper we show the use of SAPs to build complex analysis patterns from the

combination of simpler patterns. We also claim that this approach provides models

that are also extensible and reusable. We present here a case study (a flight

reservation system) showing how SAPs can be composed to build complex models in

a convenient way. In developing our set of patterns we created one pattern and

specialized some existing patterns in the context of flight reservations. These patterns

provide a common structure, that has to be present in any flight reservation system,

but they also can be of independent value.

__

Keywords: Analysis patterns, Composite patterns, Flight reservation systems, Flight

routing. Object-oriented analysis and design

1. Introduction

When dealing with the specification, design, or implementation of a number of

similar applications, common parts can be found. These parts can be specified as

patterns that are independent from a particular specification, implementation details,

or implementation language. Sometimes such modules are not so simple: a general

module that can satisfy different purposes is not trivial. Moreover, the more

complicated modules often vary slightly from application to application. As the

number of applications increases, their management becomes increasingly difficult

and unwieldy. In previous work [Fer00a], we developed the concept of Semantic

Analysis Pattern (SAP), which emphasizes functional aspects of the application

model as opposed to improving flexibility as in most design and analysis patterns.

The main purpose of this type of pattern is to serve as a starting point when

translating requirements into a conceptual model. A SAP represents a minimum

application (a set of basic use cases) so that it can be applied to a variety of situations

 2

and it can be combined with other related patterns to describe more complex

applications.

 A possible way to build complex analysis models using SAPs was described in

[Fer00a]. However, regardless of the methodology used to build the models, having a

complex pattern as a building block makes this work simpler. We show here how to

build a complex analysis pattern using a travel application as example. In this

example, the composite pattern is built from some existing patterns and one new

pattern. The application requirements are described in a common context for all the

patterns.

Section 2 describes the requirement for this system while Section 3 presents the

atomic patterns that satisfy these requirements. To describe each pattern we follow

loosely the templates of [Bus96]. Section 4 shows how we compose these patterns to

develop a flight reservation system. The effectiveness and flexibility of the complete

application; in effect, a new SAP, is shown by domain analysis using some examples.

We end with some conclusions in Section 5.

2. Requirements as common context

A flight reservation system is a commonly used system. Typically a customer

places an order for seats in a combination of connected flights from an origin to a

destination airport. The customer and the system need to check the feasibility of flight

connections and their schedule. Because of the complexity of this application, it is

difficult to build it as one unit. We show here that by composing some simple patterns

we can build this application as a SAP in a systematic way. The atomic or component

patterns correspond to specific functions of the system and can be either new patterns

or existing patterns, perhaps specialized for the application. Because of the way the

whole application is built, the resulting model is also flexible and reusable. The final

composite system could also be the basis for a framework.

It is possible to visualize the structure of a large system as a set of component

units, where each one is based on a different set of functional aspects. The list of

requirements for the reservation system is given below. These requirements can be

expressed as a set of use cases, which we do not describe in detail for conciseness.

The most important requirements for this system are:

 A flight is defined by a number and a date, and defines a route from an origin

airport to a destination airport. A plane is assigned to a flight and it contains a

set of numbered seats.

 Customers make reservations for specific seats in specific flights.

 3

 A route is the way followed by a flight from its origin airport to its destination

airport. There may be several flights that share the same origin and destination

airports. A route includes one or more spans.

 A span is a part of a route to get from a start airport to a termination airport as

part of a specific flight. The start (or termination) airport is called origin (or

destination) airport of this span.

 For each flight there are several connecting flights (different flights that leave

from an intermediate stop closely after its arrival).

 A ticket includes a one-ticket route (one-way ticket) or a two-ticket route

(round-trip ticket). Using a round-trip ticket, a passenger can go to an airport

and come back using the same route. If the passenger returns using a different

route, she needs a set of one-way tickets. Such a round-trip is a special case of

one-way trip where its source and destination are the same. Stops are not

indicated in the ticket unless the flight number changes, which indicates a

plane change.

 An airlink is any direct flight between two airports. All airlinks are spans of

some flight. A basic airlink has no stops. A route is a set of connected basic

airlinks connecting all the airports through which it passes

 For the convenience of customers we may keep information on relevant

facilities; for origins we keep aspects such as parking, for destinations we list

hotels near the airport, for intermediate stops we provide lists of hotels close

to the airport, restaurants, etc. This information may also include details of the

cities nearby.

Figure 1 clarifies these concepts. A passenger intends to go from airport A to

airport B. He has four routes available for this trip:

 Route 1: Using flights 12 and 13.

 Route 2: Using flights 12 and 14.

 Route 3: Using flights 15 and 13.

 Route 4: Using flights 15 and 14.

 He could use any of these routes in a one-way ticket from A to B. If he wants a

round-trip ticket he has more combinations, any of the four routes above to get to

Airport B can be combined with routes (16,18) or (17,18) to return to A. Flight 12

(from A to D) has two spans because it stops at Airport C, while Flight 15 has only

 4

one span (a nonstop flight). The set of Flights 12, 14 is an airlink from A to B. Flights

13 and 14 are basic airlinks connecting Airports D and B. However, Flight 14 has

another span to get to Airport E, while Flight 13 has only one span.

 Figure 1. Definitions for the requirements.

From these requirements, we derive some atomic patterns that describe specific

aspects. The Connection pattern appears to be new, while Flight Route, Seat

Collection, Airport Role, Travel Ticket, and Seat Assignment are instantiations of

known patterns in a specific context. For each functional aspect, we use a

corresponding pattern to implement it and make some adjustments to satisfy the

context constraints. Figure 2 describes these patterns as a pattern language for travel.

A Travel Ticket describes an air trip as a series of tickets that correspond to

connecting flights (Connection pattern). For each specific flight, a seat assignment

must be obtained (Seat Assignment pattern). Seat availability is determined by using

the Seat Collection pattern (a flight implies a collection of seats). The connecting

flights may use information from the airports through the Airport Role pattern. The

common contexts for all these patterns are passenger transportation systems,

including airlines, railways, water navigation, or bus systems, although for

concreteness we use the notation of air transportation. Figure 2 can be seen as a

metamodel that describes how these patterns should be connected to define a

complete model.

 Patterns can be expressed at different levels of abstraction. For example, a pattern

for general customer orders can be specialized to order tickets. The specialized

version can still be considered a pattern (and not a specific model) because there are

many situations that require ordering a series of tickets, airline reservations being one

Airport A

Airport C
a span of

Flight 12

Flight 12(one stop at C)

Flight13Airport D

Flight 14

Flight 16

Flight 17

Routes

Routes from A to D

Airport B

Connecting Flights of

Flight 12

Flight 14

Airport E

Flight 13

Flight 18

Flight 15 (nonstop)

 5

of the most important and probably the most complex. In particular, the Travel Ticket

pattern is a specialization of the Order pattern [Fer00], where each flight corresponds

to an order line, and the Seat Assignment pattern is a special case of the Assignment

pattern [Fer05]. Section 3 presents all the component patterns.

 Figure 2. A pattern language for flight reservations

3. Component patterns
We present here all the patterns described in Section 2. These are the building blocks

for the complex pattern.

3.1 Travel Ticket

Intent

Airport Role

Connection

Seat

Assignment

Seat

Collection

Flight

Reservation

Flight Route

Travel Ticket

Schedules

Seat

Assignment

Airport

Information

Flight

Connections

Seat

Booking

Seat

Availability

Plane

Assignment

Connecting Flight

Spans

Describes

 Flight

 Route Describes a

 Trip

Describes

a Route

 6

A series of tickets for a certain type of trip (one-way / round-trip) is booked for a

passenger. Each ticket describes a series of connecting flights from an origin to a

destination.

Problem
How to describe a request for a series of tickets?

Forces

 Going from an origin to a destination often implies a series of tickets, not just
a single ticket.

 The information to model a ticket must include origin, destination, flight

information, and seat information.

 A passenger is responsible for one or more tickets.

 Figure 3: Class diagram for Specialized Order (Ticket) pattern

Solution

A specialized version of the Order pattern [Fer00]) satisfies the forces. The class

model of Figure 3 shows the required information, including classes to describe the

series of tickets (TicketSeries), the passenger who is responsible for that order

(Passenger), and two sets of tickets (TicketRoute and TicketUnit). TicketRoute is

used for arranging the schedule of Flight and TicketUnit is used for price-checking or

possibly even for later check-in. Each TicketRoute object consists of several

TicketUnit objects. The corresponding sequence diagram is given in Figure 4 which

shows how to place an order for a series of tickets. The two aggregations correspond

to two views of the tickets, a set of paper/electronic tickets that describe the costs and

are used for check in, and a set of specific routes describing an itinerary.

Passenger TicketSeries

book

TicketRoute

TicketUnit

id(/account#):

String

creditInfo: String

ticketseries#: String

bookdate: String

1

type: {one-way, round-trip}

trip_source: String

trip_destination: String

ticket#: String

origin: String

destination: String

flight$#: String

class: {A, B, C}

seat#: String

1..2

1..*

1..*

1..*

 7

 Figure 4: Sequence diagram to order a set of tickets

Consequences

 This pattern describes only the ordered tickets, it must be complemented with

other aspects e.g., seat and flight information (although this information may

appear in them too).

 TicketSeries in this pattern may be any other product with multiple units.

 The customer who places an order may be a person or a corporation. Here we

only focus on the passenger who will get the ticket(s) and use it (them). We

could use a customer with two roles for this purpose.

 The requested tickets refer to a series of products. Their relationship and detail

processing are discussed later in other patterns.

 Delivery, payment, and identification details are not included.

Known uses

In several situations we need to issue a set of related tickets, e.g. air travel (a ticket for

each flight), railway tickets (a ticket for each lef), concerts (subscription to a series of

concerts).

Related patterns

This is a specialization of the Order pattern [Fer00].

3.2 Seat Assignment

:Passenger :TicketSeries :TicketRoute :Ticket-1 :Ticket-2

…

request
check availability

check availability

confirmed (Ticket-1)

check availability

confirmed (Ticket-2)

…confirmed (Ticket-n)
show-price

book
book ticket (Ticket-1)

confirm (Ticket-1)

book ticket (Ticket-n)

confirm (Ticket-n)

…

…

confirm (TicketSeries)

 8

Intent

A TicketUnit is assigned to a Seat, Flight, and Span.

Problem

How to indicate the assignment of a seat to a span of a flight and correlate it to a

ticket unit for as given passenger?

Forces

 For each right to go from one place to another in a particular flight we need to

have a description. A TicketUnit is a representation of that right.

 A TicketUnit defines a seat reservation for a flight corresponding to a

particular span. The seat may not be defined when the ticket is issued.

 To produce the Ticket Unit the availability of a seat and the feasibility of a

connecting span and its connecting flight must be confirmed.

Solution

This is a special case of a general assignment pattern, which can be used to assign

resources [Fer05]. Flight, span, and seat correspond to a ternary association and the

ticket unit that describes the assignment is an association class. Figure 5 shows

classes Seat, Span, and Flight and their assignment to a TicketUnit. Ticket units are

collected in a TicketSeries, which collects all the ticket units for a trip.

 Figure 5: Class diagram for the Seat Assignment pattern

Consequences

 TicketUnit can provide the right to go in a specific span of a flight.

TicketSeries TicketUnit

Flight

Seat

Span

{available seat#}

ticketseries#: String

bookdate: String

origin: String

destination: String

ticket#: String

flight#: String

schedule: List<departure time,

arrival time, stop>

seat#: String

{connecting flights have

connecting schedule}

1..*

{available series tickets}

{connected spans}

Assignment Pattern

association as class

dependence of constraints

 9

 Including a flight seat combination in a ticket indicates that this passenger has

a reserved seat in this flight.

 Constraints on TicketSeries help to define the connecting ticketUnit based on

available seats, connecting flights, and connecting spans.

Known uses

Assignments of seats in flights, in a theater, in a classroom.

Related patterns

This is a special case of a general resource assignment pattern [Fer05b], which can be

used to assign for example, faculty to sections in specific courses.

3.3 Collection of Seats

Intent

Keep information about a collection or aggregation of seats in a plane, vehicle, or

theatre.

Context

Any physical domain where seats must be kept together as a group.

Problem

How to describe a collection of seats that must be assigned individually.

Forces

 An entity has a certain number of similar units. For example, each seat is a

part of a plane.

 There is a whole class and a part class. For example, a plane has a whole/part

(WP) relationship with the seats it contains.

Solution

Based on that WP relationship, one can check or modify the availability of units, or

other information about the components. The class model for this pattern is shown in

Figure 6.

Consequences

 This pattern may be used to keep track of the seats of any vehicle or buiding

that has seats.

 To check if a seat in a requested class is available, the seat (part object)

should know the capacity and class information of a plane (its whole object).

Alternatively, a plane should know if all seats are booked from this WP

relationship.

 10

 Constraints defined on Seat help to confirm the available seats of a plane

which is assigned to a flight.

Known uses

Airplanes, trains, theatres, stadiums, have collections of seats, usually numbered.

Related patterns

This is a special case of the Whole-Part pattern of [Bus96]. The Whole-Part pattern describes

the aggregation of components that together define a semantic unit.

 Figure 6: Class diagram for Collection pattern (Seat and Plane)

3.4 Self-Connection pattern

Intent

Describe relationships between objects in the same class.

Problem

Objects in a set may have relationships to some others of the same set. An airport is

connected with another by an airlink. A span is connected to another if the destination

 1..*

 Flight

flight#: String

schedule: List<departure time,

 arrival time, stop>

 Seat

Seat#: String

 Plane

type: String

no#: String

seatCapacity: InfoList o

classInfo: InfoList

1

*

assigned_to

a plane has a
fixed number

of seats in a

class

 11

of the preceding span is also the origin of the succeeding one. A span is also

connected to another if the destination of the preceding span is connected with the

origin of the succeeding one by other means of transportation. If there is another kind

of connection between these two airports we use other-link (see Figure 7). A flight is

connected to another if and only if airports between two connected spans have a

connecting schedule such that the arrival time of a flight is before the departure time

of the other flight. We need a convenient way to describe these connections.

 Figure 7: Class diagrams for three instances of the Connection pattern

Forces

 An object may be connected to another object of the same type by a semantic
relationship.

 The two ends of the relationship have different meanings, e.g., origin and

destination of a flight.

Solution

The Connection Pattern describes self-associations in a class and satisfies these

forces. Figure 7 shows three instances of this pattern for connecting flights,

connecting spans, and connecting airports.

Consequences

 A connecting association is used to describe the connection between two related

objects of the same type.

Airport

Flight
Span

origin: String

destination: String

flight#: String

schedule: List<departure time,

arrival time, stop>

name: String

city: String

{connecting condition}

1..*

1

1..*

1

other_linka_connected_by

a_connecting

1..*

1

f_connecting

{connecting flights have

connecting schedule} {connection between

different spans}

s_connecting

Connection Pattern Connection Pattern

Connection Pattern

 12

 Constraints on a class help to define more precisely the connection between

related objects

 There can be association classes in the connecting association, defining attributes

of the association.

 Role names may be needed to clarify the meaning of the ends of the relationship;

e.g., origin.

Known uses

A manager is in charge of several employees, a flight has several connecting flights,

people are related to several other people in their families.

Related patterns

This pattern is an important special case of the Assignment pattern [Fer05].

3.5 Flight Route pattern

Intent

A flight route represents a collection of connecting airlinks that can be used as spans

for travel from start to termination using one flight.

Problem

How to describe a choice among a set of possible routes?

Forces

 Each Flight object defines a route from an origin airport to a destination

airport. Between the origin and the destination, there may be several

intermediate stops. An airlink which links an airport (called preceding airport)

to another (called succeeding airport) without intermediate stops is called a

basic airlink. In a route, two basic airlinks are called „connected‟ if and only if

the first airlink ends at the preceding airport of the second airlink. Two basic

airlinks in different routes are called connected if and only if these two

airlinks are connected at one airport or the succeeding airport of the first

airlink is connected with the preceding airport of the second airlink by other

means of transportation. A route is a set of connected basic airlinks

connecting all the airports through which it passes.

 All the basic connection airlinks are available for a passenger to choose as

part of a span in a path from source to destination of his trip.

Solution

 13

A specialization of the Path Pattern [Sch91] satisfies the forces. The class model for

that pattern is shown in Figure 8(a) and its application in our reservation system is

shown in Figure 8(b). Figure 8b shows a flight including one route, which in turn,

includes a subset of basic airlinks. This subset is described in association class Span.

Figure 8: Class diagram for Path pattern and its application in the reservation system

Consequences

 A span is a part of route of a flight, and the choice of a span is based on the

available connected airlinks in a flight route. For the convenience of

customers, we should list the airlinks of all the airlines. The customer's

request would be satisfied if there is any available connecting span, even

when it belongs to a different airline.

 Based on the pattern, connected basic airlinks in a route of a flight provide a

set of available spans. A passenger may select a subset of airlinks in a route to

form a span from its origin to destination. The trip can be extended by other

connecting spans from the destination of the preceding span. With all the

connected spans in different flight routes, a passenger may fulfill a series of

trips from source to destination.

 Constraints defined on connecting flights and connecting spans require that

class Airlink provide connections for different airlinks. The constraints on

Airlink

Route

Flight

Span

 dependence of constraint

origin: String

destination: String

flight#: String

schedule: List<departure time,

 arrival time, stop>

airline_link#: String

origin: String

destination: String

{connection

between basic

airlinks in a

route}

{connection of

airlinks between

different

routes}

1..* 1..*

1 1
subset

basic

1..*

1

{connecting flights must have

connecting schedule}

{connection between

different spans}

Airlink

Path

airline_link#: String

origin: String

destination: String

1..* 1..*

1 1

subset
basic

(a) (b)

 14

connecting flights are based on the connection between two airlinks in

different routes. The constraints on connecting spans are based on the

connection between different spans. The dependence of constraints is shown

explicitly in Figure 6(b).

Known uses

Routing of electric networks, transportation systems, water distribution systems.

Related patterns

[Sch91] describes pipes to fill vats with juice.

3.6 Airport Role pattern

Intent

To support the descriptions for different airlinks, the airports are classified as Origin,

Intermediate, and Destination. An airport usually plays several roles.

Problem

How to model role aspects of an object as separate role objects that are dynamically

attached to and removed from that object (core object).

Forces

 An airport may have different roles for routes and spans at the same time. In a

route, an airport and its connected airlinks indicate the available connections

for a flight. In a span, an airport and its connected airlinks indicate the

selection of reservations by the passenger.

 An airport may change its roles dynamically.

 Relationships between an airport and its roles are independent from each other

so that changes to a role do not affect airlinks that are not involved in that

role.

Solution

A specialization of the Role Object pattern [Bau00] can be used here. A core object

usually plays several roles and the same role is likely to be played by different core

objects. When a core object is currently playing the requested role, it is in a role

 15

specific way and meets any request for that role. Figure 9 shows the class model for

such a pattern specialized for a Flight Reservation system.

 Figure 9: Class diagram for Airport Role pattern

Known uses

A faculty member in a university may take the roles of instructor, thesis advisor,

Principal Investigator in a research project.

Related patterns

This pattern is a special case of the Role Object pattern [Bau00].

4. Flight Reservation pattern

Intent

This pattern describes the placement of an order for a series of tickets.

Example

Figure 10 shows a specific example of the way of using such a system. Customer A

wants to make a reservation in Dallas (DAL) on 8/29/00 (MM/DD/YY) for a business

class round-trip to Los Angeles (LAX) next week. Customer B from Shanghai needs

to attend a conference in Los Angeles on 9/12/00. Before getting there, he wants to

travel to several cities in the United States. Starting from Shanghai, he plans to go

first to Miami (MIA). Then, he will go along the east coast by car. It will take him

several days until he arrives at New York (NY). From NY, he continues the trip by

plane and arrives at LAX before 9/12/00. He wants to make a reservation for such a

trip. But a friend visiting in Hongkong (HK) asks customer B to make a reservation

AirportRoleAirport

Origin Intermediate Destination

name: String

city: String

departure_time: Date

parking_lot: Integer

arrival_time: Date

departure_time: Date

hotels: String

arrival_time: Date

nearby_hotel: String

roleType: {route_t,

span_t}

0..*

core

roles

 16

for him and his family (wife and daughter) to Dallas (from HK). Now B wants to

change his reservation and make a reservation for the friend and his family so that he

can stay with his friend at Dallas for two days.

Context

Section 2 shows the context for this pattern.

Forces

 The requested tickets and the relationships between them must be captured in

a precise way. Requests may be individual or group requests.

 A customer‟s reservations may change over time and it should be easy to

make these changes.

 The pattern must describe a fundamental semantic connection. This means the

pattern must be simple enough to apply to a variety of related situations.

 Figure 10: Some examples using the reservation system

Solution

Figure 11 combines all the patterns seen earlier and includes all their requirements. A

Passenger books a Ticket Series consisting of some Ticket Units. The series defines

some TicketRoutes, where each route is described by a Ticket Unit. A TicketRoute

consists of one or more Flights. Each flight has Route defined by one or more

Airlinks. A flight is assigned to a Plane, which has a set of seats to be used by

shanghai

Tokyo

Hongkong

Los Angeles (LAX)

Dallas (DAL)

Miami (MIA)

New York (NY)

Customer A booked in Dallas, on 8/29/00.

: round-trip, Dallas Los Angeles 9/4/00.

Customer B booked in Shanghai, on 7/8/00.

: one-way, Shanghai Miami 9/6/00,

New York Los Angeles 9/11/00.

Customer B changed his reservation.

: one-way, Shanghai Dallas 9/6/00.

Customer B booked for his friend.

: one-way, Hongkong Dallas 9/4/00.

858 <W11:00am, W7:00pm>

368 <W4:30pm, W12:30pm>

898 <M9:00am, M9:00am>

804 <F9:00pm, S6:30am>

803 <M8:00pm, M11:30pm>

<F6:00am, F2:30pm>

 17

passengers. In each Span of a flight, some seats are available for use. A quaternary

association relates ticket units to flights, spans, and seats. Airlinks connect Airports,

which can have the roles of Origin, Intermediate, or Destination for a given airlink.

Example resolved

Using such a system, customer A can select an available flight among all those

passing through the span from DAL to LAX, i.e., 803 < M 8: 00pm, M 11: 30pm;

F 6: 00am, F 2: 30pm >, and select another to come back, i.e., 368 < W 4: 30pm, W

12: 30pm >. Although the route of flight 803 covers the span from LAX to DAL and

 Figure 9: Class diagram for the reservation system

 Figure 11. Class diagram for complete flight reservation system.

he may select flight 803 for his ticket, he does not use such a flight because he does

not want to wait until Friday. He removes the relationship of the ticket for the back

trip and resets it to an earlier flight (flight 368). He will get a series of tickets with

AirportRole

Airlink

Airport

Route

Plane

Passenger TicketSeriesbook

TicketRoute

TicketUnit

Flight Seat

Span

assigned_to

association as class

implied relationship or dependence

{available seat#}

Origin Intermediate Destination

id(/account#): String

creditInfo: String

ticketseries#: String

bookdate: String

1 *

type: {one-way, round-trip}

trip_source: String

trip_destination: String
origin: String

destination: String

ticket#: String

flight#: String

schedule: List<departure time,

arrival time, stop>

seat#: String

type: String

no#: String

seatCapacity: InfoList

classInfo: InfoList

{a plane has a

fixed number

of seats in

a class

name: String

city: String

departure_time: Date

parking_lot: Integer

arrival_time: Date

departure_time: Date

hotels: String

arrival_time: Date

nearby_hotel: String

roleType: {route_t,

span_t}

airline_link#: String

origin: String

destination: String

0..*

core

roles

{connecting condition}

1..*

1

1..*

1

other_link

a_connected_by

a_connecting

{two connecting

airlinks?}

{connection

between basic

airlinks in a

route}

{connection of

airlinks between

different

routes}

1..* 1..*

1 1subset

basic

1..*

1

1..* 1

*

1..*

1

f_connecting 1..*

{connecting flights have

connecting schedule}

1..2

1..*

1..*

{available series tickets}

{connection between

different spans}

s_connecting

 18

two sets of round-trip ticket units. The first one is for the trip from DAL to LAX and

the second one is for the trip back to DAL. Each ticket unit in a set represents a span

using a part of a route of the flight. For example, customer A uses the part of route of

flight 803 from DAL to LAX and that of flight 368 back to DAL. A trip in any set can

be extended by a ticket with a connecting span. The extension will be discussed in the

next example for customer B. Any airport in the trip may have different roles for

route and span. For example, DAL is an intermediate stop for the route of flight 803

but it is also an origin airport for the span from DAL to LAX. To check if there is an

available seat in the requested class, the detail capacity and class information of

planes < B767, 131 > and < B737, 189 > which are assigned to flights 803 and 368

can be accessed by the collection of requested seats. If the requested seat is not

available and there is no more available seats in the plane, he may use another flight.

Finally, customer A will be satisfied by a seat in the plane. As shown in Figure10, J17

in < B767, 131 > and F12 in < B737, 189 > are such seats he can book. Using the same

system, customer B can select a series of connecting spans for the one-way trip from

Shanghai to LAX based on all the basic airlinks supported by connecting flights. As shown in

Figure 11, among all the basic airlinks, he selects span < Shanghai,LAX> and its connecting

span < LAX, MIA > which are part of routes of flight 858 and its connecting flight 368

to go to MIA. Flight 858 is connected by flight 368 at LAX because the arrival of

flight 858 at LAX is two hours earlier than the departure of flight 368 in the same

day. The trip by flight 858 is extended by flight 368 from LAX to MIA. From MIA,

the passenger will go to NY by car; that is, there is an other-link relationship between

MIA and NY. As the arrival time of NY is earlier than the departure time of flight

803, the passenger may select the connecting span of flight 803 from NY to LAX

after a trip from Shanghai to New York. The connection condition and its satisfaction

which is requested by the customer and supported by the routes of flights are used to

check the feasibility of spans for the trip. The availability of the seat(s) in the plane

assigned to the route of the used span is checked for the reservation. If there is no

available seat in the plane, the customer should select another set of connecting spans

to reach the destination of his trip. After the check, customer B makes a reservation

for the available series of tickets with three one-way ticket units (see Figure 13).

 19

Figure 12: Domain analysis of a reservation system for customer A (round-trip)

After a request from his friend in Hong Kong, customer B wants to change his

reservation so that he can stay at Dallas with his friend for two days. He selects the

simplest span for him to go to DAL. Instead of using the connecting spans of flight

858 and flight 368, he selects the span directly to DAL from the basic airlinks in the

route of flight 858. After two days, he continues his trip to MIA using a connecting

span of connecting flight 804. It is advantageous here to keep most of the feasible

parts of the trip and change to a more convenient plan dynamically and easily. In

Figure 14, the customer only changes the connecting spans at DAL and chooses the

simplest span to reach DAL. The related connecting flights and the connecting spans

based on the basic airlinks of the routes which are already available in the system

provide an easy change (see Figure 14).

 20

For the friend and his family, customer B selects flight 898 and makes a reservation

for three seats in the same trip. As shown in Figure 15, there is a series of one-way

tickets for the friend. Each ticket unit is assigned to the flight 898 (from HK to DAL),

a seat of the plane, and the span based on the route of such a flight. Except for the

seat, all the ticket units share the same information of this trip. Duplicate copies of the

information for airports and flights are avoided in such a system. This simplifies the

process of finding the feasible spans and available seats for all in the family. It also

facilitates the management of the information for airports and flights.

 21

Figure 13: Domain analysis of a reservation from Shanghai to LAX for customer B

 22

Figure 14: Domain analysis of a changed reservation for customer B

 23

Figure 15: Domain analysis of reservation for the friend and his family

Known uses

Orbitz is a good example of a system that uses a similar pattern. Most airline web

sites use similar models, although not necessarily object oriented.

Consequences

The model satisfies the forces in the following ways:

 The pattern describes the request and satisfaction of ticket(s) for different
types of trip

 24

 The pattern can be used as a more abstract pattern; it can be applied, for

example, to any reservation system for a series of products. The products may

be different in different applications.

 Some of the component patterns could be replaced by a pattern with a

different function. This would allow extending the model for other

applications or with different functions. This and the previous consequence

make this pattern reusable and extensible.

 The effect of other activities can be reflected through appropriate operations.

 It is easy to make changes in reservations or to add more functions for a ticket,

e.g., descriptions of stops.

In order to make the pattern applicable to other cases, we have left out:

 Details of the items, such as operations for each service.

 Information about the airlines.

 Exceptions, e.g., unavailable ticket, delays, and flight cancellations.

 Alarms; fro example, when a flight is sold out.

 Historical information.

 Billing and payment policies, e.g., order cancellation and refunding.

 Personal identification.

These aspects should be completed with additional patterns.

Known uses
Orbitz provides possible routes between any two destinations, including flights of any
airline. These can be converted into reservations and later into tickets.
American Airlines provides similar functions but including only their own flights and
those of their alliance partners.

Related patterns
This is a composite pattern using the six patterns described earlier.

 25

5. Conclusions

Our approach involves the use of object-oriented methods and Semantic Analysis

Patterns. By solving this type of problems using object-oriented methods we reap the

general benefits of this approach, i.e., reusability, extensibility, and conceptual

abstraction. It is recognized by researchers and practitioners that object-oriented

methods are superior to procedural approaches for handling complex systems. This

advantage extends to our approach. The general use of patterns is considered an

advance in object-oriented methods because patterns distill the knowledge and

experience of many developers and are highly reusable. Patterns also improve

software quality because they have been scrutinized by many. Our Semantic Analysis

Patterns have been shown to ease the task of building conceptual models by directly

translating functional aspects of an application [Fer00a] and can also be used to

define Secure SAPs, where the functionality is complemented with authorization and

authentication aspects [Fer07]. In this paper we have shown, through a case study, the

ability of SAPs to compose patterns to build complex patterns or complex models in

general. The component patterns realize the specifications of the system. While

experiments with actual projects are necessary to prove the practicality of this

approach, we can say that this methodology is a better way to build complex systems

than procedural programming or ad-hoc object-oriented methods. We have also

shown our approach to be convenient to improve practical approaches such as XP

[Fer03], which is another proof of its possible value. There are other object-oriented

approaches based on patterns, e.g., several approaches are discussed in [Sia01], and

we don‟t claim that our approach is better than any of these methods, this would

require a detailed and lengthy study. We do claim that our approach allows us to build

complex models in a convenient and error-free way.

The specific problem that we used as case study is of intrinsic interest because of its

economic importance [Rie03]. It is clear that software for flight reservation defined

according to the requirements of Section 2 is used in many places. This software has

been designed either by the procedural approach (most likely) or by object-oriented

methods (in the most recent cases). However, our search did not yield any complete

examples, only trivial portions in some textbooks. It is clear that software with this

functionality is used in practice. We cannot then compare our solution to other

solutions to this specific problem, but it was not our aim here to show a better

solution to this problem; the example was selected because it was complex enough to

show the value of our approach. Based on the discussion above, we would expect our

solution to this specific problem to be easier to develop, more flexible, and more

reusable than most solutions, at the same time without losing modeling precision.

What is more important, the use of analysis patterns can help build good conceptual

models to designers who have little experience.

 26

Acknowledgements
Our shepherd, Sergio Soares, provided valuable comments that considerably

improved this paper.

References

[Bal91] C. Ball, “An object oriented analysis of air traffic control”, MITRE Corp,

August 1991, http://www.mitrecaasd.org/library/tech_docs/pre1999/wp90w542/

[Bau00] D. Baumer, D. Riehle, W. Siberski, and M. Wulf, „„Role Object‟‟, Chapter 2

in Pattern Languages of Program Design 4, Addison- Wesley, 2000.

Also in: http://jerry.cs.uiuc.edu/~plop/plop97/Workshops.html#Q2

[Bla98] M Blaha and W. Premerlani, Object-oriented modeling and design for

database applications, Prentice-Hall, 1998.

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-

oriented software architecture, Wiley 1996.

[Fer99] E.B. Fernandez and X. Yuan, „„An Analysis Pattern for Reservation and Use

of Reusable Entities‟‟, Procs. of Pattern Languages of Programs Conference,

PLoP‟99. http:/ /jerry.cs.uiuc.edu/~plop/plop99

[Fer00] E.B. Fernandez, X. Yuan, and S. Brey, „„ Analysis Patterns for the Order and

Shipment of a Product‟‟, Procs. of Pattern Languages of Programs Conference,

PLoP 2000, http://jerry.cs.uiuc.edu/~plop/plop2k

[Fer00a] E.B. Fernandez and X. Yuan, “Semantic Analysis patterns”, Procs. of 19
th

Int. Conf. on Conceptual Modeling, ER2000, 183-195.

[Fer03] E.B.Fernandez, "Building complex object-oriented systems with patterns and

XP”, Chapter 47 in “Extreme Programming Perspectives” , M. Marchesi, G. Succi,

D. Wells, and L. Williams, (Eds.) , Addison-Wesley, 2003, pp. 591-600.

[Fer05a] E. B. Fernandez, T. Anantvalee, J. Labush, and M. M. Larrondo-

Petrie,."Analysis patterns for elections" in Proceedings of the Nordic Conference on

Pattern Languages of Programs, Viking PLoP 2005, Otaniemi, Finland, 23-25

September 2005.

[Fer05b] E.B.Fernandez, T. Sorgente, and M. VanHilst, "Constrained Resource

Assignment Description Pattern". Proceedings of the Nordic Conference on Pattern

Languages of Programs, Viking PLoP 2005, Otaniemi, Finland, 23-25 September

2005.

http://www.mitrecaasd.org/library/tech_docs/pre1999/wp90w542/
http://jerry.cs.uiuc.edu/~plop/plop97/Workshops.html#Q2
http://jerry.cs.uiuc.edu/~plop/plop2k

 27

[Fer07] E.B.Fernandez and X.Y. Yuan, " Securing analysis patterns", Procs. of the

45th ACM Southeast Conference (ACMSE 2007), March 23-24, 2007, Winston-

Salem, North Carolina, http://acmse2007.wfu.edu

[Fow97] M. Fowler, Analysis Patterns-Reusable Object Models, Addison-Wesley,

1997

[Ful07] Mei Fullerton and E. B.Fernandez, "An analysis pattern for Customer

Relationship Management (CRM)", Procs. of the 6th Latin American Conference on

Pattern Languages of Programming (SugarLoafPLoP’2007), May 27-30, 2007,

Porto de Galinhas, Pernambuco, Brazil, 80-90.

[Rie97] D. Riehle. "Composite Design Patterns." In Proceedings of the 1997

Conference on Object-Oriented Programming Systems, Languages and Applications

(OOPSLA '97). ACM Press, 1997. 218-228. http://www.riehle.org/computer-

science/research/1997/oopsla-1997.pdf

[Rie03] H. Riebeck, “The ticket chase”, IEEE Spectrum, January 2003, 72-73.

[Sch91] S. Shlaer and S. J. MelIor, „„An Object-Oriented Approach to Domain

Analysis‟‟, in Object Lifecycle: Modeling the World in States, Prentice Hall,

Englewood Cliffs, New Jersey, 1991.

[Sia01] K. Siau and T. Halpin, Eds., Unified Modeling Language: Systems Analysis,

Design and Development Issues, IDEA Group Publishing, Hershey, PA, 2001.

http://www.acmse2007.wfu.edu/
http://www.riehle.org/computer-science/research/1997/oopsla-1997.pdf
http://www.riehle.org/computer-science/research/1997/oopsla-1997.pdf

